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Abstract

Dimensional analysis and dynamic similarity requirements show that Reynolds, Froude,
and Strouhal scales are important parameters to be satisfied for free-running submarine model
maneuvering tests in order that they correctly represent full scale behavior. The requirement that
all three scales be satisfied simultaneously presents conflicting demands on the relationship
between the velocity U and the characteristic length L of the model. The inability to meet these
demands presents technical challenges to properly satisfy dynamic similarity for Radio-
Controlled Model (RCM) maneuvering tests. Instead, we take a first principles approach by
considering the forces and moments acting on the vehicle and seek solutions that dynamically
produce the same scaled forces and moments on the model as exist on the full scale vehicle. In
this manner we dynamically satisfy the above three scaling parameters. The completion of the
theory will lead to the development of a modified test procedure for and subsequent validation
by free-running submarine model maneuvering experiments.

Summarizing, we will develop an extended dynamic similarity theory that can be applied
to the unsteady maneuvers of the RCM. We will apply the theory practically to improve the
RCM test program and increase correlation with full scale data. This will provide a physical
basis for deciding which improvements are better made in simulation and also enhance the model
the model simulation paradigm.

Administrative Information

The work described in this report was performed by the Propulsion and Fluid Systems
Division (Code 5400) and the Maneuvering and Control Division (Code 5600) of the
Hydromechanics Department at the Naval Surface Warfare Center, Carderock Division
(NSWCCD). The work was funded by the Office of Naval Research, Code 331 as part of the
Scaling Task of the FY07 6.1 Turbulence and Stratified Wakes Program (Program Element
0601153N).

Introduction

The Radio-Controlled Model (RCM) is a semi-autonomous, battery-powered, free-
running 1/16™ to 1/20™-scale submarine model that can be configured as a model of any of the
submarine classes in the fleet. Because it is free running, it can move in all six degrees of
freedom and provide an unsteady maneuvering capability. The RCM can perform a wide range
of maneuvers and is currently the best predictor of full-scale submarine maneuvering
performance. It is an integral part of the hydrodynamic process employed by the Maneuvering
and Control Division to develop Submerged Operating Envelopes and other hydrodynamic
products (Hess et al, 2004).

When RCM maneuvering simulation data are compared with full-scale data, they exhibit
varying degrees of Reynolds scale effect. Forces and moments acting on the ship hull,
appendages and on the propulsor are known to experience such scale effects. With a two-order-
of-magnitude difference in Reynolds number between model and full scale, one should not be
surprised to see scale effects appearing in such typical RCM maneuvers as: turns, rudder jam
recoveries and sternplane jam recoveries.



To see how the Froude scale arises, consider a deeply submerged submarine undergoing a
maneuver which results in pitching (and/or rolling) motion. The initial phase of the ship motion
response is characterized by the excitation moment and countered by the restoring moment. The
latter is a product of ship weight and a moment arm produced by the sine component of
metacentric height. The submarine pitch equation of motion, when made dimensionless, gives
rise to a dimensionless quantity, which represents the ratio of the hydrodynamic exciting moment
to the hydrostatic restoring moment. This quantity is identical to the Froude number as it
expresses the ratio of inertial to gravitational effects acting on the submarine. To simulate the
restoring moment correctly in model tests, Froude scaling must be used, and this dictates the
model approach speed (Hess et al, 2004).

As a free running model, the RCM exhibits unsteady motion during maneuvering
simulations. Theodorsen (1935) shows that the unsteady dynamic lift and phase on a sinusoidal
pitching foil oscillatory motion are uniquely characterized by the reduced frequency. For RCM
maneuvers, the ship motion is not solely oscillatory; instead, the phase and unsteady load acting
on the RCM model in unsteady maneuvering are characterized by the Strouhal number
(Schlichting, 1979 and Blake, 1984). Strouhal scaling is therefore important for RCM
maneuvering simulation.

In addition to the Strouhal scale, RCM data clearly show that both Froude ( /7 ) and
Reynolds scales ( Re ) are needed to satisfy the dynamic similarity requirement, yet this cannot
be accomplished when fresh water is used for model testing. Fluid material parameters such as
density, p, dynamic viscosity, x, and hence kinematic viscosity, v, are quite similar for salt
water and fresh water. Therefore, when matching Reynolds and Froude numbers at both scales,
one must chiefly rely on the variation in length and velocity scales because the fluid material
parameters are nearly the same. Once the length scale is set by the chosen model scale ratio,
then the velocity scale is used to effect the matching. When Froude scaling is applied to set the
test speed, one finds that the Reynolds number is 80 to 100 times greater at full scale than at
model scale. Consequently, the boundary layer thickness and boundary layer velocity profile are
quite different between full scale and model scale. This explains the unavoidable appearance of
Reynolds scale effects in RCM data.

Extensive test programs were carried out in the 1980’s and 1990’s to improve RCM
simulation test results. One area of difficulty, RCM casualty recovery simulation, showed
insufficient craft pitch-up motion when compared with full-scale data. A method to enhance
pitch was found, and it involved the application of a layer of heavy grit on the upper surface of
the hull. Furthermore, the grit appeared to have no untoward effect for maneuvers where it was
not normally required. This grit method has been used since the 1990’s for all RCM
maneuvering simulation tests.

Over the years, however, RCM data with grit has displayed mixed results with good
correlation in some tests and poor correlation in others. The mixed results with grit and the
fundamental fact that Reynolds numbers cannot be matched led to the conclusion that the test
program should be augmented with fixes applied in simulation. This model the model approach
remains the current standard to ensure the reliability and accuracy of the existing RCM test
method to simulate full-scale performance.

While the RCM remains the best predictor of full-scale submarine maneuvering
performance, we believe that improvements to the test program can be made, which will then



have a favorable impact for modeling. This is not an easy task. Clearly, the flow field around
the vehicle is quite complex during maneuvering and particularly during casualty recovery, and a
reliable numerical model requires extensive correlation and verification with model and full-
scale data. We observe the following fundamental issues associated with the existing RCM test
method.

e The physics associated with the use of a grit layer to improve maneuvering is not
understood.

e Froude scaling is currently used to set the model approach speed. For unsteady
maneuvering, the requirement should be that the Froude number is matched at each
instant of time throughout the maneuver. The implication is that the ratio of the
hydrodynamic exciting moment to the hydrostatic restoring moment may not remain
correct throughout the maneuver.

e Reynolds scale effects cause forces and moments induced by full scale appendages and
the hull to be inadequately simulated in RCM tests.

e Strouhal scale which is an important parameter influencing unsteady motions is not
considered in RCM tests.

e Existing scaling formulas that relate model data to full scale performance are not
rigorously derived.

The interrelated consequences of each of these issues for the maneuvering model are not
understood. Some of the impacts may well be mitigated, whereas others may be amplified. This
is a fundamental question that needs to be kept in mind. As the theory unfolds in the Technical
Approach section, the challenge will be to apply it in a practical manner to improve not only
RCM maneuvers, but also the resulting model the model simulation process.

Objectives

Develop an extended dynamic similarity theory that can be applied to the unsteady
maneuvers of the RCM. Apply the theory practically to improve the RCM test program and
increase correlation with full scale data. Provide a physical basis for improvements that are
better made in simulation and enhance the model the model simulation process.

Technical Approach

Dimensional analysis and dynamic similarity requirements show that Reynolds, Froude,
and Strouhal scales must be preserved in RCM maneuvering simulation tests (Baker, 1973;
Gukhman, 1965). Let Re denote the Reynolds number, which is defined by Re =UL/v, where
U and L denote a characteristic speed and length, respectively. Define Fr as the Froude number

givenby Fr=U / ,/ gL . Finally, St denotes the Strouhal number represented by

St = (da/ dt )L /U , where da/dt represents a characteristic angular velocity (such as p, g or 7).
The Reynolds number describes the relative importance of viscous effects to inertial effects, the
Froude number characterizes the ratio of hydrodynamic to hydrostatic restoring moments acting
on the model, and the Strouhal number is a fundamental measure of the unsteadiness of the



motion. The subscripts s and m will denote the full scale ship and the model, respectively. We
then wish to obtain:

(uL)v), =(UL v), Rescale
(U/Jg—L)m =(U/J_) Frscale . (1
[(da/dt)L/U],, =[(de/dt)L/U], Stscale

These equations show that since U and L appear both in the numerators and in the denominators
of these quantities, they cannot be matched simultaneously. We have developed a new approach
to address this technical challenge.

Basic Concepts

Ship motion is a response to forces and moments acting on a craft. A typical submarine
configuration showing rudders, sternplanes, sail and the general shape of the hull is depicted in
Fig. 1. The classic approach of satisfying geometric and kinematic similarities in model tests is
intended to produce similar forces and moments at model and full scale to generate the same ship
motions. Generating proper forces and moments acting on the model is the first priority in
conducting model tests.

Figure 1. A Typical Submarine Configuration

The forces, moments and the corresponding ship motion can be expressed in terms of
three linear and three angular differential equations similar in form to that which describes a
spring-mass system. Furthermore, Lloyd (1989) has shown that for conventional surface ships in
waves the product moments of inertia are usually small and negligible. Let F, and M, denote

force and moment components, which will be normalized by 1/2pUS and 1/2pUS L,
respectively, where we use the symbols L and S to denote ship length and hull surface area. Let
m, and /; denote ship mass and moment of inertia, and m, and /, denote virtual mass and
moment of inertia. The quantities d’x,/dt*> and d’e,/dt* will denote linear and angular
acceleration components. The index variables i =1,2,3 and i =4,5,6 will represent surge, sway

and heave for linear motions and roll, pitch and yaw for angular motions, respectively. We then
obtain:



d’x,

£ =(m°+ml)d‘2 =123 and
1/2pU*S 1/2pU%S o
o (2)
(10 +11)_—i
cf dt’  i_456

1/2pUSL _ 1/2pUSL

If normalized forces and moments on the left-hand-sides (LHS) of Eqgs. 2 are the same for
both the model and the ship, namely LHS, = LHS,, then

F o i=1,23 and
12pUs ) \1/2pU’S ) ”
M, = Y, i=45,6
12pU°SL) ~\1/2pU’SL) ™

Equality of the forces and moments will then result in a vehicle response, which must be
the same at model and full scale; namely, the inertia terms on the right-hand-sides (RHS) of
Eqgs. 2 will be the same and be given by

3)

@ d*x,
(mo +m, )—d—fi" (mo +m, )’ﬁ
——d | _d' | ;_133 and
1/2pU%S 1/2pUS
d’a, d’a, ' &
(IO + 11) dt2' (IO + I]) dt2‘ ) 4 5 6
12pUSL | | 12pU%SL N

From Egs. 4, scaling formulas or transfer functions can be derived to relate model data to
full scale ship motion. The challenge will be to develop an experimental procedure for
submarine model testing that can produce the same normalized forces and moments acting at
both scales as specified in Egs. 3.

Mathematical Formulation
First consider the angular motions. The linear motions will be treated later. Let «
denote an Euler angle component, where a; = (¢7, O,y) and @, 0 and y represent roll, pitch,

and yaw angles, respectively. The ship motion can be generalized in the form of a differential
equation for a spring-mass system for each angle component as follows (refer to Fig. 1).

da d’a d’a
Me+Ml(a)+M2(?j=M3(_d7']:(IO+Il)?' (5)



The term M, refers to excitation moments from movable appendages such as rudders,

sternplanes and a propulsor. The terms M, (), M,(da/dt) and M, (d af dt2) denote the

moments that are functions of flow angle, angular velocity, and angular acceleration,
respectively. Equation 5 applies both at full scale and model scale, namely

|:Me+M1(a)+M2("2_‘:J:| =|:(Io+11)'dz—?:|

dt

: (6)
da d’a
[Me +M,(a)+M, (EH = [(10 +1, )7} )
The first task in this study is to identify a test method such that forces and moments
acting on the full scale vehicle are correctly represented at model scale, namely to achieve
M, +M,(a)+ M, 51—‘1] M, + M @)+ M,| 2%
dt dt

e - - M

—pU-°SL —pU-SL

> P ) > P s

The next task will be to derive the scaling formulas to relate measured RCM data to full
scale ship motions. This task is performed by equating the vehicle response on the right-hand-
sides of Egs. 6

d’a d’a
(10+1l) 2 (10+Il) 2
dt - dt ®)
1 | ’
—pU*°SL —pU*SL
2” _ | 8% s

Test Procedure to Satisfy Dynamic Similarity Requirements

We will assume that forces and moments acting on a full scale vehicle can be simulated
with RCM tests if Reynolds, Froude, and Strouhal numbers are preserved at each scale.
Simulation of a ship in a planes-fixed turn will be used as an example to demonstrate the
concepts and to develop a new RCM test procedure. A similar approach can be applied to rudder
or sternplane jam recovery simulations. Note that a planes-fixed turn is one for which no
automatic controller is used with the sternplanes to maintain a constant depth during the turn;
instead, the sternplanes are maintained in a fixed position, and the depth is allowed to vary.

A sketch of craft trajectory and the corresponding response of the vehicle as described by
time histories of ship speed, angular velocity, and accelerations in response to a rudder angle
deflection are shown in Fig. 2 (Lewis, 1989). The terms v, £ and r denote lateral velocity, drift
angle and yaw angular velocity (turning rate). The terms v and 7 represent accelerations. The
rudder is deflected with a constant deflection rate of d&, /dt to a specified angle J, as shown in
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Fig. 2. The craft motion is divided into three phases with the start of the rudder deflection
representing the time origin, 1 =0.

The first phase is dominated by the rudder deflection, and the ship response is primarily
inertial. The second phase is associated with ship turning represented by the appearance of side
velocity v and turning rate . The quasi-steady turn, as demonstrated by the disappearance of
inertial terms, signifies the third phase. To show a turning example, the symbols used in Eq. 6
are revised as

M, + M) +M,(r)| _| M, + M)+ M,(r) (7a)
l o) 1 2 ’

~pU’SL ~pU’SL

2P 5P

m s

where v is the lateral velocity at the center of gravity (CG) and is obtained from v=-Usin /.

Motivation for Reynolds Scale Simulation in RCM Tests

The requirement to match Reynolds numbers results from a consideration of
Conservation of Momentum for the fluid in which the vehicle is moving. This physical law is
expressed in the Navier-Stokes equations, and when these are made dimensionless, the Reynolds
number arises as the key dimensionless group expressing the ratio of inertial to viscous forces.
By matching this dimensionless group at both model and full scale, the governing equations for
the fluid will then be identical and will result in similar solutions. As discussed above in Eq. 1,
we must also match Froude and Strouhal numbers. As we proceed we will find that it is possible
to match the latter two groups, but we cannot also match the Reynolds number simultaneously.
Therefore, the two-order-of-magnitude difference in Reynolds number between model and full
scale implies Reynolds scaling effects will appear at model scale for those motions where
viscous effects are important. The impact of these effects will be to alter the force and moment
distribution acting on the vehicle to various degrees. Although we cannot match Reynolds
number, if we can assess how these force and moment changes are created by the appendages
and the hull, then we can correct them. We will refer to this correction approach as dynamically
satisfying Reynolds number. The next few subsections will evaluate the needed corrections on
various appendages and the hull for a submarine turning maneuver.

Reynolds Scale Correction on Rudder Performance - First Phase

As noted in Fig. 2, the first phase of a turning maneuver is that short period of time when
the vehicle motion is still governed by inertia and corresponds to v~0, r =0, v#0 and 7 #0.
We can simplify Eq. 7a, to obtain

M M
e | | ) ©)
Luvst] |[Lovise
2P 2P

m s



Equation 9 requires that the dimensionless moments produced by rudders to turn the vehicles
about their CG must be equal if the first phase of the turning maneuver is to be properly

simulated in RCM tests.

As can be seen in Fig. 1, rudders are located at the aft end of the vehicle and are

immersed in the boundary layer developed along the ship’s hull. The ratio of the boundary layer
thickness to the ship length is much greater for the model than for the full scale vehicle as shown

by the typical profiles given in Fig. 3. The model rudder placed in the thicker boundary layer

will develop a smaller force and moment than a full scale rudder. This Reynolds scale effect is

associated with the boundary layer velocity deficit.
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Figure 3. Boundary Layer Velocity Profiles at the Rudder Plane

Another scale effect acting on the rudder is related to the boundary layer displacement
thickness. The Reynolds numbers based on mean rudder chord are around Re =0.5x10° for the
model and Re =40x10° for a full scale rudder. Measurements on several NACA airfoils, shown
in Fig. 4, exhibit significant scale effects on lift coefficients especially at low Reynolds numbers

of less than 1x10° (Loftin and Smith, 1949; Loftin and Bursnall, 1950; and Whicker and

Fehlner, 1958). The lift coefficients are seen to increase with Reynolds number. This trend is

also observed theoretically by Spence (1954).

Consider a simple rectangular foil of chord length ¢ and span s located in a non-uniform
flow u(y) as shown in Fig. 5. The section lift A£ on a segment Ay due to an angle of attack &,

is given by

AE=C, I:%puz(y)]cAy 0 1)

Taking the limit as Ay — 0, we obtain

£= [%s) 2 i) fedy =2 pes, |

05,

1,
s Ay.
2. ,[2/014 (y)]c y

) v’ (y)dy,

(10)

(11)
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where 8C, /05, (y) denotes the lift curve slope, which varies along the span as a result of the

boundary layer velocity gradient. However, the weak variation in C; /86, (y) in the boundary
layer at model scale is much smaller than the variation resulting from a two-order-of-magnitude
Reynolds number difference between model and full scale. Hence, we will replace the weak

boundary layer variation with a mean value, 6C, /36, , and remove it from the integral.

a

o
0

¢ Ay S

W

Figure 5. Boundary Layer Effect on Lifting Surfaces
We obtain

1 .aC
B o
5P 58,

J, w0 (12)

Shift now to dimensionless variables «' =u/U and y'= y/s to get

= 1 a_C'_l; 2 Yo pd '
£—-5pc5,a§r Usjou Oy . (13)
Let the rudder area be denoted by 4. =cs and divide both sides by hull surface area S to get a
normalized lift given by

P 4,5
S "ds,

- i uonay. (14)
EpUZS

Use X, to denote the distance between the rudder and the center of gravity of the vessel.
Multiply both sides by X, /L to get a normalized turning moment in the form
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M, | &= % T ,

Lovsp| 1 ust {L Saa_@ f (y)dyl -

2 2 s

( = ; (15)
M, |_EX, X B BT s

: = == S56§ Iou ONdy'| model

~pU>SL —pU3SL m

2 2

L -~ m

m

where the subscripts are used to represent the equations evaluated at full and model scales

By now substituting the above equations into Eq. 9 and noting that [X, /L], =[X,/L], we

2] 5] [£row]
[%J[ } u”(y)dy}’ "
o 5L,
aaN

where £ denotes the Reynolds scale effect on rudder lift as a result of boundary layer

displacement thickness, and 7 the scale effect due to the difference in the hull boundary layers at
each scale. Summarizing, we have

oy
a— 65’— s
e
2, |

A Reynolds-averaged Navier-Stokes (RANS) code was used to calculate boundary layer
velocity profiles on three vessels. The numerical results for 7 are shown in Table 1 and are
found to be sensitive to hull shape with values ranging from 1.06 to 1.16.

. =18,

~

~

5.1, =

L wonar]

[fwonay| "

and 7=
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Table 1. Values for 77=[J: u'z(y')dy']s/ U: ulz(y')dy’],..

Top Rudder | Bottom Rudder
Ship I 1.06 1.09
Ship II 1.12 1.16
Ship III 1.07 1.08

The effect of Reynolds scale on lift curve slope & has been calculated theoretically by Spence on
a two dimensional Joukowski airfoil at a 6° attack angle and is shown in Fig. 6. The value of &

is estimated to be around & ~1.13 for a model Reynolds number of Re = 0.5%10° and a full

scale value of Re =40x10°. Thus, a significant viscous effect on rudder force is noted. Two
methods to satisfy Eq. 16 are presented.

, 1.66x108
Sail
L R&n -
Rudder
06 Res (Full-scale)—
C. | Rudder ax10 7
’ R em (Model) '
R 05x 108 S s R -~
b SCALE EFFECT ON LIET AND MOMENTS
-~ SYMMETRICAL JOUKOWSHKI
~ AEROFOIL (= = 6°)
x 02 : S——— B
D |
T Lo . !
'\) . ' i ‘
2 i
" | | L
108 R o W

Figure 6. Reynolds Number Effect on Lift Slope

Method 1

Modify the rudder deflection angle in the RCM test. For this case, the model rudder is
constructed to be geometrically similar to that for full scale, namely [Ar /S ]s = [A, /S ]m , and

Eq. 16 becomes

[6] =[5],&n where&>landn>1. (18)
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As a numerical example, consider the case of a full scale vessel conducting a turning maneuver
with a rudder deflection of [5,]8 =25°. To compensate for the Reynolds scale effect on rudder

force and turning moment, the model rudder must be deflected to

[6, ] = [5, ] Jén= (25X1.13X1.06)= 30° for one hull shape, and

‘ 19
[6,], =[6,], £7=(25)1.13)1.16)=33° for another hull shape Ve
Note carefully that the values of £and 7 used in this example are just for demonstration. More

accurate values will need to be obtained from a correlation study of full scale and RCM
maneuvering data.

Method 2

Modify the rudder size for the RCM model. In this approach, the rudder deflection
angles for execution of the turn will be the same for RCM tests and for full scale trials. That 1s,
we will set [6’,]", = [5,]j , and Eq. 16 becomes

H

>

T : (20)

(4], 1.20/2> one hull shape

= [S]m _ 2 —
[4]. _-[Efgq_(l/ﬂ )577- 1.31/2  another hull shape

where A =L /L, is the length scale ratio between full and model scales. This implies that the

scale effect on rudder force and moment can be mitigated if the rudder on the RCM model is
made 20-31% greater in area than a geometrically similar rudder.

Second Phase of a Turning Maneuver

The second phase of a turning maneuver corresponds to conditions where the vehicle
begins to respond to the rudder deflection with lateral and yawing motions such that
v#0,r#0,dv/dt#0 and dr/dt # 0. Under these conditions, we return to Eq. 7a to establish

the dynamic scaling requirement:

M, + M)+ M,(r)| | M, + M)+ M,(r)
- - '
—pUSL —pUSL
5" . zf s

(7a)

The presence of nonzero v and r terms will produce varying flow attack angles along the
ship hull, sail and control appendages, such as rudders and sternplanes.
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Reynolds Scale Correction on Sail Performance

At model scale, the sail typically operates at a Reynolds number of Re, =1.5x 10°. Let

u, v, and w denote velocity components at the ship center of gravity (CG). The angular velocities
for roll, pitch, and yaw motions will be given by p, g, and r. Let X be the distance between

sail
the CG of the ship and the sail, such that it represents the moment arm for turning. Z,,, a
positive-definite scalar, will denote the vertical distance between the location of the resultant
force produced by the sail and the x-axis of the ship, thereby denoting a moment arm for roll.
The side slip angle f at the sail can be calculated by

+rX

sail

vsal'I =v+pZ

sail

— ain=| = Vsait . (21)
p=sin ( T )

Dynamic lift will be produced by the sail due to the angle of attack, p. Asailis

typically located forward of the CG of the ship where the boundary layer that develops along the
ship’s hull is still relatively thin. Using a typical 1/7th power law turbulent boundary layer
velocity profile, a value of 7 ~1.02 may be estimated on the ONR Body 1 sail using available

geometrical information, (Faller and Merrill, 2001). A value of &=1.07 is estimated by
applying Spence’s data provided in Fig. 6 for Re,, =1.5x 10°. Using these two values for £ and
n and the method described in Eq. 20, we can correct the Reynolds scale effect on the sail

[4.]. _[s].

Lordm _ Ldm =1.09/4*. 22
AN G A @)

Equation 22 indicates that the scale effect on the force and moment produced by the sail
on the RCM model can be mitigated by making the model sail 9 % greater than a geometrically
similar sail.

Reynolds Scale Correction on Ship Hull Performance

At model scale, the ship’s hull typically operates at a Reynolds number of
Re, =1.5x10’. Steady flows over axisymmetric bodies at an angle of attack have received
considerable attention both theoretically and experimentally in the areas of three dimensional
flow separation, the formation of leeward vortices and the unsteadiness around separation zones
(Bridges, 2003; Fu et al, 1994; Han and Patel, 1979). A 6:1 prolate spheroid undergoing time
dependent maneuvers was tested by Hoang, et al. (1994) using their Dynamic Plunge-Pitch-Roll
(DyPPiR) facility at a Reynolds number of Re,, =4.2x 10°. Their data showed that unsteady
flow separation phenomena were significantly different from those associated with steady
separation. Furthermore, airfoils at an angle of attack in unsteady flow exhibit significantly

delayed flow separation (Shen and Fuhs, 1999). Lloyd (1989) observed on surface ships that
viscous forces play a less important role in ship motion dynamics. Two turning cases are
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considered. One corresponds to a gentle turn with small v and r terms, and the other corresponds
to a tight turn with large v and r terms.

Gentle Turn

There is no scale effect on the ship’s hull due to the boundary layer velocity deficit term,
namely 7 =1. Itis further noted from unsteady experimental data that the flow angles associated

with flow separation observed in steady tests are greatly delayed. For a gentle turn, drift angle at
all locations along the hull is small, and cross flow may not play a significant role in producing
force and moment. Based on the theories of Spence (1954), Howarth (1935) and Bridges, et al.

(2003), £ ~1.01t01.02 is estimated for the ship hull at Re, =1.5x10’. Using these two values
for £ and 7 and the method described in Eq. 20, the Reynolds scale effect on the hull may be
estimated to be

# I——[Ah"”]“ =£n=1.01t01.02. (23)
Ahull]s

The scale effect on ship hull is small. This is in agreement with general observations in
straight line and rotating arm data. If model experiments are performed at Reynolds numbers
greater than 10 to 15 million, then scale effects between model and full scale appear to be
negligible for the purpose of making stability and control predictions.

Tight Turn

During a tight turn, accompanied by larger v and r terms, large flow angles as much as 20
to 30 degrees may be encountered at the ship stern. Therefore, cross flow separation may be an
issue. The degree to which scale effects play a role in the cross flow separation for RCM
maneuvering tests at Re, =1.5x10" is not clear. This is an area which warrants further study.

Surface roughness (grit) has been applied to the RCM hull and has demonstrated considerable
influence on turning maneuvers. If scale effects on cross flow separation should prove to be
large in RCM experiments, then a closer examination of distributed hull roughness should be
carried out. Another possibility is the application of a thin wire along the side of the ship hull to
trigger a supercritical flow pattern as demonstrated in a sphere experiment (Schlichting, 1979).
The resulting transition to turbulent cross flow can greatly modify cross flow drag.

Reynolds Scale Correction on Rudder Performance — Second Phase

Equation 7a describes the moments to be matched between model and full scales. The
simpler Eq. 9 was obtained by removing terms that are negligible. The remaining term, the
exciting moment, results from the rudder deflection. During the second phase of the turn,
nonzero lateral and yawing motions modify the moment produced by the rudder deflection such
that it may be said to originate from a smaller effective rudder angle. Further, this effective
rudder angle changes continuously in time (grows smaller) while the ship is in a turn as v and »
grow in magnitude. Let J, denote the geometric rudder angle with respect to the ship centerline.
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The effective rudder angle J, ; is defined by the difference of the geometric rudder angle and a

correction term which represents the instantaneous flow angle acting on the rudder
8,5 =06, —c(v, r)
-5 —tan"[_v_rX’]’ (24)

u

where X, , a positive-definite scalar, is the distance from the CG aft to the rudder. Following
Eq. 18 for geometrically similar rudders, we now use the effective rudder angle to get

|.5reﬂ_|,,, =|.6reﬂ_ls sn
[6,-cl, =[6,-¢], &n
5], -lc, =([6.], -[c].)&n but[c], =[c]. =c. (25)
5], =16,], £n-clgn-1)

-v—-rX,

(), =15, £n-an | 2= e n-0)

The last of Egs. 25 gives the angle to which the rudder should be set at model scale to produce
the same exciting moment as that obtained at full scale. The correction for scale effects given by
Eq. 18 for phase 1 and by Eq. 25 for phase 2 should be applied at each instant of time. However,
during phase 2, as v and r grow in magnitude, the effective rudder angle decreases as does the
exciting moment implying that the need for scale effect correction diminishes. Thus, we propose
a rudder angle correction as shown in Fig. 7, which is larger during Phase 1 and the early part of
Phase 2, but decreases in magnitude as the turn proceeds. The details of the shape of the
correction can be refined after conducting model tests.

(Sr)Ln lor model

/ | (’Sr) s infull-scale

Rudder Angle
-~

1st Phase [ 2nd Phase | 3rd Phase Time

Figure 7. Proposed Rudder Deflection in Model
Tests for Reynolds Scale Correction
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Table 2 summarizes the estimated magnitudes of Reynolds scale effect corrections on the
exciting moments produced by rudders, sternplanes, the sail, and the ship hull.

Table 2. Reynolds Scale Effects

Item & n én
Rudder 1.13 1.06 ~1.16 1.20 ~1.31
Sternplane 1.13 1.06 ~1.16 1.20 ~1.31
Sail 1.07 1.02 1.09
Hull 1.01~1.02 1.00 1.01~1.02

Motivation for Froude Scale Simulation in RCM Tests

For submarines, the size of the top rudder is typically greater than the bottom rudder.
Both rudders are linked such that they respond with the same rudder angle when executing a
turn. When a turn is initiated, a roll moment is produced from the different size rudders, and the
ship will experience roll motion in addition to yawing. A hydrostatic restoring moment is then
induced resulting from the couple produced by weight acting at the CG and buoyancy acting at
the center of buoyancy (CB). Buoyancy is expressed by B = pVg, where V is the volume of the

ship. For a submarine, the CB is located a distance Z,, directly above the CG, and this

metacentric height (reduced by the sine of the roll angle) serves as the moment arm for the
restoring moment. Let ¢ denote the ship roll angle. The similarity requirement to ensure the

same dimensionless restoring moments during the turn can be expressed by

PVgZy;sing _| PV8Zyssing ) (26)
1/2pUS L 1/2pU°SL |
Eq. 26 will be satisfied if
Z V4
(22e] -|&] and [pl. =), @

The first condition of Eq. 27 states that the model must be tested at Froude scale. A test
method to ensure that Froude scale is preserved during RCM testing will be discussed later. The
second condition of Eq. 27 requires that the angle experienced during roll motion at model scale
must be the same as that measured at full scale. The conditions needed to satisfy these
requirements during RCM testing will be examined.

Motivation for Strouhal Scale Simulation in RCM Tests

A ship in a turn develops angular velocities in roll, pitch and yaw associated with the
M,(r) term. Unsteady lift and moment are produced as a result. The dynamic lift on an airfoil
in a sinusoidal pitching motion has been theoretically investigated in an inviscid fluid by
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Theodorsen (1935). His theory shows that the dynamic lift and the phase angle with respect to
the instantaneous foil angle is uniquely defined by the reduced frequency K defined by

K=—, 28
U )

where @, C, and U denote the oscillation frequency of the attack angle variation, chord length,
and free stream speed, respectively.

During RCM maneuvering tests, the motion in the second phase of the turning maneuver
is unsteady. The angular velocity de/dt is not constant, but is changing continuously with time.

Experience shows that the unsteady forces and moments can be characterized by a Strouhal
number St as follows (Schlichting, 1979 and Blake, 1984),

_da L

St =——,
dt U

(29)

Matching the Strouhal scale requires that

daU], Ld U],

Equation 30 is an important equation to be satisfied in model tests, if the amplitude and phase of
the unsteady forces and moments are to be correctly simulated at model scale. To satisfy Eq. 30,

we will make a prudent choice that
[ﬁﬁ] = l:iq_] U, (31)
a|, Lat],U,

Substituting the right-hand side of Eq. 31 into the left-hand side of Eq. 30 will then dictate that:

L L
GIRE oY
Therefore, the angular velocity to be experienced by the RCM model must be maintained at an
angular velocity experienced by the ship multiplied by a factor of U, JU,. . We will see in a later

section that Eq. 32 can be satisfied by matching the Froude number and that Eq. 31 will then
follow as a result of this matching.

These are the requirements that ensure that unsteady motions are correctly simulated in
RCM tests. Methods to satisfy these two requirements will be discussed in a later section.

Crashback in Sternplane (Rudder) Jam Recovery Simulation

During the process of recovery from a sternplane jam, a large rudder deflection is
typically executed to turn the ship sideways to produce a large drift angle and large form drag to
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slow the ship. This is often followed by a rapid reversal of direction of propeller rotation (RPM
reversal) to produce a large negative thrust to decelerate and stop the ship. This type of
maneuver where the propeller is in reverse but the vehicle still has forward velocity is termed
crashback. Thus, a major distinction between a conventional turning maneuver and a crashback
maneuver is the propeller RPM reversal. As an example we will use a model test, which is
conducted for the purpose of correlating with known full scale crashback maneuvers conducted
during trials of the full scale vessel. Therefore, we assume that time histories of full scale ship
speed, RPM, velocity components, attitude and trajectory are known. Generally, after extensive
earlier predictions prior to full scale trials are provided to the fleet, a series of model scale
casualty recovery maneuvers are carried out after full scale trials to validate the reliability of the
RCM simulation capability. The procedure discussed here makes use of the latter as an example,
but the method can be reversed so that RCM tests can be used for full scale predictions prior to
trials.

Notional time histories of full scale ship speed U,(#,) and propeller RPM N, (¢,) asa
function of full scale time ¢, are sketched in Fig. 8. Prior to execution of a sternplane jam
recovery, the steady ship speed and RPM during the approach are denoted by U, and N, Let
1,y denote the time when the RPM reversal is executed, and ¢, the time when the propeller
speed drops to zero. At time ¢,,, the propeller reaches a new prescribed speed of N, (the

subscript rev refers to the reversed negative RPM) and is then maintained at this constant
negative value. As a result, the ship experiences a sharp drop in ship speed as noted in Fig. 8.

4k

Nsgev.,

Figure 8. Full Scale Ship Speed and Propeller RPM Reversal
Given U (7,) and N, (1,)

Existing RCM Test Procedure for Jam Recovery Simulation

As in a full scale jam recovery, a steady approach speed is required for RCM correlation
maneuvers. The scaled model approach speed must be set at
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(33)

where A =L /L, is the length scale ratio between full and model scales, and we will defer the
explanation of Eq. 33 until a later section in Eq. 43.

Now, let J denote a propeller advance coefficient defined as J =U / ND,, where D,
represents the propeller diameter. In an ideal fluid, the propeller RPM required to match

advance coefficients at each scale,
L e (34)
ND, L ND, L

is then expected to produce the same thrust coefficient at each scale. However, in a real fluid, as
a result of viscous effects, the ship hull drag coefficient C, is greater at model scale than it is at

full scale, ([C,]m >[c.], ) So, the propeller must produce additional thrust to overcome the

additional drag at model scale. In other words, the propeller requires additional RPM in a real
fluid than for the ideal fluid case, and therefore must operate at a lower propeller advance
coefficient, J,, <J,.

The required RPM at model scale is given by
Npo=KNoV2, 35)

where K, is a coefficient such that K, >1. The value of K, depends on the hull form geometry
and ship speed. Typically, K, is obtained from model tests.

At time ¢,, the propeller reversal is executed. (Note that the relationship between model
scale time 7, and full scale time 7, will be provided in a later section.) At time ¢,, and
thereafter, propeller rotation speeds in the existing procedure are set by using

Nmrev=Nsrevﬁ’ (36)

Shown in Fig. 9 is a time history of model speed resulting from the above procedure that
has been (Froude) scaled to the full scale range and then compared with the target full scale time
history to be matched. As noted in the sketch, the time history of predicted ship speed can differ
from the target ship speed by as much as 12% to 14%. Since dynamic forces are proportional to
speed squared, significant error in the simulation of hydrodynamic forces and moments can be
present in RCM correlation tests. This problem results from the fact that, while the approach
speed is properly Froude scaled, the necessary Froude-scaled speed at each instant of time
throughout the maneuver is not preserved during RCM tests. A method to preserve the Froude-
scaled speed during RCM testing is presented next.
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Figure 9. Model Measured vs. Target Ship Speed

Proposed RCM Test Procedure for Jam Recovery Simulation

The procedure to establish the approach speed is the same for the new method as it is in
the existing approach. However, the reversal procedure is different. Consider the motion along
the body x-axis. Let 7 and  denote propeller thrust and thrust deduction. A negative sign is
assigned to the reversed thrust to indicate that it now acts in the same direction as the body
resistance since the vehicle is still moving forward. Since, the thrust deduction is not sensitive to
viscous effects, we find that

-T1-9)-R| [-Ta-0)-R
[ 1/2pU2S L_[ 1/2pUS ] 37

Expressed in dimensionless form, we obtain

[CT]m =[CT]s—%—' (38)

During the early stage of the RPM reversal while the vehicle still maintains an appreciable
forward speed, [C, ], >[C,]. and 1—7 >0, which then dictates that

€], 216 ). (39)

So, we find that the reverse thrust produced by the model is too large, and as a result of
scale effects acting to increase model resistance, less negative thrust is required during the early
stage of the RPM reversal. Instead, we propose to modify Eq. 36 with

Ny =K@)N, VA, (40)

where K(¢)) is a time varying coefficient.
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The RCM model is operated under digital closed-loop control with two-way
communications from the vehicle to an operations center accomplished by using radio signals.
Therefore, the ship speed and RPM data can be up linked in real time. This means that RPM can
be adjusted during a maneuver to ensure that the Froude-scaled model speed agrees with the
target speed. The behavior of K(z,) is likely to depend on hull form and Reynolds numbers, and

validation with experiments will be required to determine the shape of the K(z,) function.

During the later stage of the RPM reversal, ship speed has decreased from the level
maintained during the approach. Furthermore, the negative reversed thrust produced by the
propeller will now be substantially greater than the ship resistance. Hence, the needed thrust
coefficient is likely to now be the same at model and full scale. We expect, therefore, that
K(t,) > 1 towards the end of the maneuver. A sketch of the modified shape of the RPM

function is provided in Fig. 10.
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/( Moo ™) -‘7&.)' va
| P ——
TN AL A

Target: Lt = U

Simulated: =

Lty

ta

Figure 10. Proposed Procedure to Set Model RPM

24



Summarizing, the existing approach for establishing the RPM level in crashback
simulation is based on using the same propeller advance coefficients for model and full scale
propellers, namely J,, = J,. In the proposed approach, the RPM will be adjusted such that

Froude-scaled speed is preserved during the maneuver. We will see in the next section that this
also has the benefit of preserving the Strouhal scale as well.

Transfer Functions (Scaling Formula)

The fundamental purpose of model testing is to use the model data to predict full scale
performance. The formulas to relate model and full scale ship performance are termed transfer
functions or scaling formulas. These are now derived.

The dynamic equations for linear and angular motions are given in Egs. 2. We postulate
that if the LHS of equations representing the forces and moments acting on the ship are
simulated in model tests, namely if LHS, = LHS, , then the motions experienced by the ship will

be duplicated by the model RHS,, = RHS,. The relationship between full scale and model scale

behavior can be deduced from these response functions. The derivation of the transfer functions
will start with linear motion.

Linear Acceleration Scaling

Consider the x-component of linear motion given in Egs. 4

d*x v
(mo +m, )F (mo St ml)? .
1/2pU%S | | 12pUS |° @)

Let a =d’x/dt* denote the linear acceleration. Although added mass is associated with the

transformation of kinetic energy in ship motion, viscous effects associated with this quantity are
small [Szebehely, 1952, 1953]. Equation 4 may be simplified to

. [”’o"'ml]m IPUZSJs N [mo]m lPUzSJs __(_J_sz_é,l
a, - [mo +ml]s IPUZSJM N [m()]s [pUZSJm - u, L, .

(41)

A comparison of Eqs. 41 and 27 suggests that the solution for linear acceleration can be set by

at) _y gng v-u2 L (42)

We see that the time history of linear acceleration measured at model scale is directly applicable
to full scale with the proper time scale applied.
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Linear Velocity Scaling
To satisfy Egs. 27, 32 and 42 requires that the model be tested at a speed given by

U,.(t,,)=U—j—/’fl or Ut)=vAU,(t), @3)

where =L /L, is the length scale ratio between full and model scales, and U,,(7,) is termed

the target speed. Note that this relationship must be satisfied throughout the entire time history
of the maneuver. The Reynolds scale effect, which alters model scale resistance, requires that
propeller RPM be adjusted to compensate and preserve this Froude-scaled speed relationship as
discussed in the previous section. Note also that Eq. 43 is identical to Eq. 32, which is one of the
two conditions to also satisfy the Strouhal number. The other condition, Eq. 31, will be
addressed below in the section on angular velocity scaling.

Time Scaling

By definition,
at)= dlf,;f’s) . (44)
Integrating, we find that
fat, = [~ av,
as
i jal JZ dU. where a,=a_and dU, =/7 dU,, 45)

t,=va1,

and this represents the relationship between the time base to be used at full and model scales.

Linear Displacement Scaling

In a similar manner, we have, by definition,

u,(t,)= d";t(:*) . (46)
Integrating this expression, yields
[ax, = [U, a1,

x,(t,)= VAU, N4 dt, where U, =AU, and 1, =V 1,, (47)

x,(,)= 4 x,(t,)
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and relates the time history of ship trajectory at each scale.

Angular Acceleration Scaling
Recall from Egs. 4,.

d*a d*a
I +1 I, +1 )—
(+)dt (Z, )

= " 4
1/2pUSL 1/2pUSL @
As with added mass, we will assume that viscous effects associated with added moment of
inertia are small, that is
[10+Il]m [IO]M
~ . (48)
[IO+Il]s [IO]s
Moment of inertia / is defined by
I = Ixzdm I, = jyzdm I = Izzdm. (49)
We will make the assumption that the model can be fabricated to satisfy
'
_lJ ], Af (50)
] L], Ll

In practice, to satisfy Eq. 50 is not an easy task. Information on full scale moment of
inertia data will be required. Furthermore, obtaining a required mass distribution in the model
may prove to be time consuming or impossible to achieve. A method to circumvent this possible
fabrication difficulty is being investigated.

Substituting Egs. 48 and 50 into Eq. 4 gives

2 2
| i (51)
ar | Aldt” |
This equation states that the angular acceleration time history observed at full scale can be
predicted from model angular acceleration data divided by the scale ratio A =L /L, .

Angular Velocity Scaling
The angular velocity is defined as
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da (d’a
== j . (52)

Note that df, = Vi dt, is invariant in linear motion or in angular motion. Substitution of this
and Eq. 51 into the above equation results in

da| __1 [da
£]-48].

This is an important result. One of the assumptions required for the Strouhal scale to be
preserved during model testing is Eq. 31, which is repeated below.

&%= 2
dt |, |a] U,

Substituting Eq. 43 into Eq. 31 shows that it matches Eq. 53. Therefore, if these relationships
obtained from Froude scaling are preserved throughout the maneuver, then the Strouhal scale
will also be matched ensuring that unsteady effects are similar.

Angle Scaling
An angle results from integration of an angular velocity as follows
da
a=|—adt. 54
7 (54)

Substitution of dt, = Ja dt,, and Eq. 53 into the above equation gives

a(,)=a,(t,). (35)

This is an important result. One of the assumptions required for restoring moment to be
preserved in RCM tests is the second of Eqs. 27. This assumption is now verified by Eq. 55,
where ¢, = ((D, 0,://) and ¢, @ and y represent roll, pitch, and yaw angles, respectively.

Summary of Transfer Functions

The scaling formulas that relate model and full scale maneuvering behavior are
summarized in Table 3. We are pleased to report that these formulas are used in the existing test
procedure. We have systematically derived these formulas from first principles using the
similarity scaling approach defined herein. The requirements needed to obtain Table 3 are
clearly specified. A new test procedure is proposed so that these requirements are realized in
RCM tests.
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Table 3. Scaling Formulas

Quantity Formula
Linear Acceleration a,t)=a,lt,)
Linear Velocity Ut)=+A U, t,)
Linear Displacement x,(t,)=4x,(t,)
Angular Acceleration [ da 1 d*a |
| dr’ } :I[ ar |
Angular Velocity [ da } - _1_[ da |
Ldt |, Jaldr ],
Angle a()=a,t,)
Time t, =4 t,

Within the framework of the present mathematical formulation, we have shown that the
Strouhal scale can be satisfied in RCM tests if the Froude scale is matched. Corrections have
been introduced in order that Reynolds scale effects on forces and moments acting on the full
scale craft are correctly simulated in model tests with the proviso that the assumptions introduced
in Eqs. 48 and 50 hold. To compensate for the scale effect on ship resistance, propeller RPM can
be adjusted to match the Froude-scaled target speed. Furthermore, as a result of relatively low
Reynolds numbers on the model, and the location of appendages in a relatively thick model hull
boundary layer, significant scale effects on forces and moments will be experienced by: rudders
and sternplanes, the sail (moderate effect), and the ship hull (smaller effect). Methods to
alleviate these effects on forces and moments have been proposed.

Concluding Remarks

We consider the modeling of maneuvering histories of ship motion, trajectory and
attitude to be expressed by differential equations with terms that resemble a spring-mass system.
Forces and moments acting on the vehicle and the subsequent ship motions in RCM tests and full
scale trials are formulated based on a similarity approach. Within the framework of the present
mathematical formulation, requirements and test methods to match Froude, Strouhal, and
Reynolds scales (achieved dynamically) in RCM tests are discussed.

We postulate that: if the Strouhal scale can be preserved, then the unsteady forces and
phase produced by the ship in response to the excitation forces and the subsequent unsteady
motions will be correctly simulated. Studies reveal that the Strouhal scale can be satisfied in
RCM tests if: (1) the Froude scale can be matched and (2) Reynolds scale effects on forces and
moments acting on the craft can be correctly simulated and (3) restoring moments in pitch and
roll motions can be correctly simulated.
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The Froude scale at each instant of the maneuver can be satisfied by adjusting the
propeller RPM. Experience must be gained to develop a workable procedure to tune the RPM
time history.

As a result of relatively low Reynolds numbers on the model, and the location of
appendages in a relatively thick model hull boundary layer, significant scale effects on forces
and moments will be experienced by: rudders and sternplanes, the sail (moderate effect), and the
ship hull (smaller effect). Methods to alleviate these effects on forces and moments have been
proposed. During a tight turn maneuver, scale effects on flow separation will have to be
investigated.

Scaling formulas have been derived from similarity solutions. We have assumed that

1], ) Iz, _ (1. =P ps

50
AR AR R

is satisfied on RCM models. If not, the scaling formulas shown in Table 3 require modification.
Finally, the assumption that added mass and moment of inertia are insensitive to Reynolds scale
effects should be verified.
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